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Image processing is a very broad field of study that encompasses a multitude of operations, each of them
with different purposes and circumstances of use, complexities and results. Nowadays, the bests results
for automatic image study (image segmentation, image classification, object detection, etc.) are obtained
using deep learning, and more specifically convolutional neural networks. We explore and conduct exper-
iments on a specific part of image processing, mathematical morphology, investigating on the best way of
circumventing operations’ complexities regarding their integration in a supervised learning pipeline.

Le traitement d’image est un domaine d’étude très vaste qui englobe une multitude d’opérations, cha-
cune ayant des spécificités, des circonstances d’utilisation, des complexités et des résultats différents. Au-
jourd’hui, les meilleurs résultats pour l’étude automatique des images (segmentation d’images, classifica-
tion d’images, détection des objets, etc.) sont obtenus en utilisant l’apprentissage profond, et plus spéci-
fiquement les réseaux neuronaux convolutifs. Nous explorons et menons des expériences sur une partie
spécifique du traitement d’image, la morphologie mathématique, en recherchant la meilleure façon de
contourner les complexités des opérations concernant leur intégration dans un pipeline d’apprentissage
supervisé.

Keywords
mathematical morphology, morphological layer, morphological neural network, deep learning, grayscale
mathematical morphology, image processing

Laboratoire de Recherche et Développement de l’EPITA
14-16, rue Voltaire – FR-94276 Le Kremlin-Bicêtre CEDEX – France

Tél. +33 1 53 14 59 22 – Fax. +33 1 53 14 59 13
rhermary@lrde.epita.fr – http://www.lrde.epita.fr/

rhermary@lrde.epita.fr
http://www.lrde.epita.fr/


2

Copying this document

Copyright © 2021 LRDE.
Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with the Invariant Sections being just “Copying this document”, no Front-
Cover Texts, and no Back-Cover Texts.

A copy of the license is provided in the file COPYING.DOC.



Contents

1 Introduction 4

2 Mathematical Morphology 5
2.1 Binary Mathematical Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Grayscale Mathematical Morphology . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Supervised Learning 8
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Convolutional Neural Networks (CNNs) . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Problematic and Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Prior Results 12
4.1 First Approximation With Counter Harmonic Mean (CHM) . . . . . . . . . . . . 12
4.2 Proposed Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 LMorph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 SMorph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Work, Experiments and Results 18
5.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Experiences Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Edge Cases Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3.1 Structuring Elements Learning Troubles . . . . . . . . . . . . . . . . . . . . 20
5.3.2 Architecture Inherent Range Problem . . . . . . . . . . . . . . . . . . . . . 21

5.4 Robustness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.1 Binary Morphology with SMorph . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.2 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Conclusion 31

7 Bibliography 32



Chapter 1

Introduction

Mathematical Morphology (MM) is a part of digital image processing that is concerned with im-
age filtering and geometric analysis by structuring elements —which can be assimilated to other
images in the gray value morphology domain. Originated from the early work of Minkowski
and Hadwiger on geometric measure theory and integral geometry (Hadwiger, 1957; Hilbert
et al., 1911; Minkowski, 1903), and modernly formulated by Matheron and Serra (Matheron,
1975; Serra, 1983), mathematical morphology operations are very powerful tools, with a success
coming from their ability to manage the finiteness of the digital image range (Angulo et al.,
2017).

The idea behind mathematical morphology is to locally compare structures within the image
with a reference shape called the Structuring Element (SE). MM can provide, among other prac-
tical interests, boundaries of objects, their skeletons, and their convex hulls. It is also useful for
many pre- and post-processing techniques, especially in edge thinning and pruning. Generally
speaking, most morphological operations are based on simple expanding and shrinking opera-
tions.

Nonetheless, for specific objectives and precise results, image manipulation with MM opera-
tors can be hard: finding the right combinations of operations and structuring elements is a very
tedious part of the process; furthermore, attaining optimal solution is near-impossible when an-
alyzing complex and heterogeneous data with sophisticated objectives. With this problematic in
mind and looking at the recent breakthrough of deep learning in image processing initiated by
Krizhevsky et al. (2012), one appropriate thought could be to take advantage of ever-expending
data sets and the generalization power that supervised learning provides to help us in the task
of finding those required combinations of operators and structuring elements.

In this paper we will first go through a mathematical morphology and a supervised learning
introductions in Chapter 2 and Chapter 3 respectively, followed by Chapter 4 in which we will
summarize prior knowledge and experiments —as this paper is in the continuum of a previous
one (Kirszenberg et al., 2021)—, and Chapter 5 where newly conduct experiments and freshly
formed problematic will be detailed, ending with a conclusion in Chapter 6 where we will also
express further objectives.



Chapter 2

Mathematical Morphology

In this chapter, I will introduce the basics of mathematical morphology, starting with the orig-
inal set approach and definitions, continuing towards a more adapted and practical theory for
conventional image analysis.

2.1 Binary Mathematical Morphology

Mathematical morphology describes two operations at the root of everything, that are erosion
and dilation. The base definitions of those transformations are binary oriented, which means it
is just about space comparisons (intersection and inclusion) between two sets (Matheron, 1975;
Serra, 1983). For the following formulas we define an Euclidean space E, X a subset of it,
which can be identified as the manipulated image, and B another set, which can be seen as a
neighborhood delimiter, called the structuring element:

εB(X) = {z ∈ E,Bz ⊆ X} (erosion) (2.1)

δB(X) = {z ∈ E,Bz ∩X 6= ∅} (dilation) (2.2)

Where Bz is the structuring element B centered on the studied z element (delimiting a neigh-
borhood around z):

Bz = {b+ z | b ∈ B} (2.3)

Essentially, for the erosion, the element z of E will be in the resulting set εB(X) if the set Bz
is entirely included in X (if all the selected neighborhood of z is in X); for a dilation, z will be
in the resulting set δB(X) if Bz and X intersect (see Figure 2.1).

Together, they can be combined to create higher order transformations: opening and closing.
The opening γ = δ ◦ ε can be useful to remove small objects (usually bright pixels) of an image,
whereas the closing φ = ε ◦ δ removes (or fills) small holes (Ritter and Wilson, 1996).

2.2 Grayscale Mathematical Morphology

A downside of the previously defined binary operations is that it does not take into account the
elements values. Conventional images are not binary and represented as sets, but grayscaled
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Figure 2.1: Each sub-image is presented as structuring element (colored) and shape (X) on the
left side, and resulting set on the right. On the left figures an example of binary dilation, on
the right figures an example of binary erosion. (Top Left) No intersection between the shape
and the structuring element - (Bottom Left) Intersection - (Top Right) The structuring element
is not included in the shape - (Bottom Right) Included. Pictures originally from Peter Corke
(YouTube)

and could be seen as 3D landscapes (see Figure 2.2) —and so does a structuring element. With
this in mind, grayscale morphological operators (see Figure 2.3) can be determined (Serra, 1983;
Sternberg, 1986), with the image and structuring element now defined as functions, f : E ⊆
Z2 → R and b : B ⊆ E → R, respectively. Operations obviously have to be adapted:

(f 	 b)(x) = inf
y∈E
{f(y)− b(x− y)} (erosion) (2.4)

(f ⊕ b)(x) = sup
y∈E
{f(y) + b(x− y)} (dilation) (2.5)

Those definitions also allow for a binary structuring element to be specified:

b(x) =

{
0 if x ∈ B
−∞ otherwise

(2.6)

Certainly, opening and closing can also be defined:

f ◦ b = (f 	 b)⊕ b (opening) (2.7)

f • b = (f ⊕ b)	 b (closing) (2.8)

https://www.youtube.com/watch?v=9UEzr3BakQo
https://www.youtube.com/watch?v=9UEzr3BakQo
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Figure 2.2: Grayscale image (left) and its 3D representation (right)

Figure 2.3: Results examples of grayscale dilation (Top Middle), erosion (Top Right), opening
(Bottom Middle), closing (Bottom Right). Original image on the left (Top and Bottom). Images
from Yu (2004)



Chapter 3

Supervised Learning

Supervised learning has been around for decades with the objective of automating complex
processes like deduction, decision, distinction, etc. This is the second half of this subject, and
some specificity will be depicted with the objective of giving more details about how a neural
network is actually learning and why it is problematic when trying to integrate morphological
filters within.

3.1 Preliminaries

Given an input, a neural network (an actual program with a lot of interconnected parameters)
will compute an output. From this output, an error can be calculated by comparing it to the
expected output; the main idea will be to minimize this error by adjusting the program’s pa-
rameters. This error is a function and minimizing it is in fact finding the global minimum of
it, which corresponds to finding the ideal parameters. To modify the parameters in the correct
way, a method called Gradient Descent is used.

The idea behind this method is to compute and use the derivative of the error function to
have an indication about its local curve and be able to follow a descending slope (with the
expectation of going towards the minimum).

Figure 3.1: Illustration of the gradient descent method from PRIMO.ai

http://primo.ai/index.php?title=Gradient_Descent_Optimization_%26_Challenges
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3.2 Convolutional Neural Networks (CNNs)

When talking about object detection, image analysis, image classification and essentially ev-
ery algorithm that tries to apply the conveniences of deep learning and back-propagation in
signal related fields, Convolutional Neural Networks (CNNs) appear to be the best contenders.
Throughout the years, many variants were proposed with architectures and layer arrangements
very peculiar and different, but the principle stays the same with the application of a convolu-
tion kernel (or filter, see Figure 3.2), which is updated and learned throughout the training
process.

Convolution based networks were at the root of the deep learning breakthrough in image
processing techniques (Russakovsky et al., 2015), in which the convolution layer plays an im-
portant role as an automatic feature extraction process. However, the convolution, which is a
weighted summation within the sliding window, merely captures the linear features, resulting
in losing nonlinear information regarding image content, such as object position, meaningful
region, shape, and size (Shih et al., 2019).

Morphological operators are likewise very efficient at extracting features (topological and ge-
ometrical, such as shape, size, connectivity, and distance), but also useful in image enhancing
processes like denoising. As said in the introduction, the biggest problem of using morpho-
logical operators is finding (in a trial-and-error fashion) the right operations, optimal sequence
of them, and arranging the shape of their corresponding structuring element, since everything
depends on the data and the objectives; thus, having a network learn everything instead would
also solve these problems, presumably increase morphological operations power. In this way,
morphological operators could be great contenders to convolutions in the supervised learning
field.

Nicely enough, if the filters are thought as structuring elements, only the convolution op-
eration needs to be replaced by a morphological operator to get a Deep Morphological Neu-
ral Network (DMNN). It would also directly integrate non-linearity in the network, which is
essential for great generalization. However, one problem stands out: remembering the base
equations of grayscale erosion and dilation (2.4, 2.5), they use min and max functions which are
non-derivable, but as said in the previous section the derivatives of the functions used in the
network are needed to benefit from the gradient descent method.

Figure 3.2: Convolution layers and the associated feature maps concept illustration, from Ponti
et al. (2017)
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3.3 Problematic and Environment

The biggest problem with the objective of replacing convolution layers by morphological layers
is therefore the non-derivability of the min and max functions which makes it impossible not
to disturb the gradient descent flow; that is why here we are trying to find the best way to
approximate those.

To find the best approximation function, the best suited for its integration in a deep neural
network, the fundamental step is to test the encountered possibilities. After choosing an ap-
proximation function, like the counter-harmonic mean (CHM) and the α-softmax which will be
presented afterwards, their potency is being tested within a network (see Figures 3.3 and 3.4)
which was structured the simplest way possible: the main idea is to apply on various images,
from a database like MNIST (LeCun et al., 1989), morphological operations with known struc-
turing elements to create target images for the network, and the network is asked to find a way
to generate those target images from original images. In this sense, the network is evaluated on
its capacity to learn the correct operation (erosion, dilation, opening and closing for now) and
structuring elements which were used to get the target images. The size of the network and the
number of operations and filters to learn depend on the order of the operation used to create
the target images.

Figure 3.3: Schema of the training technique and the used network for simple operations (ero-
sion and dilation). Example for a dilation operation.
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Figure 3.4: Schema of the training technique and the used network for composed operations
(opening and closing). Example for a closing operation.



Chapter 4

Prior Results

This subject is based on previous work and experiences, in this section we will expose some
background knowledge. We will go over multiple propositions and results of approximating
functions, essentially a reference and the two proposed in the paper my work is based on.
Furthermore, results exposed in this previous paper will be recapped and examined.

4.1 First Approximation With Counter Harmonic Mean (CHM)

The p-convolution layer (PConv) was proposed by Masci et al. in 2013. It is a morphologi-
cal layer that uses the Counter Harmonic Mean (CHM) (Equation 4.1), also known as Leamer
Mean, to approximate min and max functions. It serves as a reference in this work as it pio-
neered the use of morphological operators in neural networks (Hu et al., 2021), and is a great
result reference as other papers (Shen et al., 2019; Shih et al., 2019) also trying to incorporate
and exploit min and max approximation functions in a Deep Morphological Neural Networks
(DMNN) will very likely be inspired by it and/or compare to it as well.

The CHM has a parameter, p in the following definitions, which as it tends to one infinity
(positive or negative) approximates the maximum or minimum of a set of values (equations 4.2
and 4.3) which can be weighted.

For n ∈ N, ∀i ∈ {1, 2, ..., n} and yi, wi ∈ R+, we can define Y := {y1, y2, ..., yn}; ∀p ∈ R the
Lehmer Mean is defined as:

Lp,w(Y ) :=

∑n
k=1 wk.y

p
k∑n

k=1 wk.y
p−1
k

(4.1)

With the resulting properties being:

lim
p→+∞

(Lp,w(Y )) = max(Y ), (4.2)

lim
p→−∞

(Lp,w(Y )) = min(Y ) (4.3)

In the case of p-convolutions, weights are the values of the convolution kernel (or structuring
element). The p-convolution of an image f at pixel x for a given (positive) convolution kernel
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w :W ⊆ E → R+ (with E ⊆ Z2, the image definition space) and the parameter p ∈ R is defined
as:

PConv(f, w, p)(x) = (f ∗p w)(x) =
(fp+1 ∗ w)(x)
(fp ∗ w)(x) =

∑
y∈W (x) f

p+1(y)w(x− y)∑
y∈W (x) f

p(y)w(x− y) (4.4)

And from that we can recover erosion and dilation approximations:

lim
p→+∞

PConv(f, w, p)(x) = sup
y∈W (x)

{f(y) + 1

p
log (w(x− y))} = (f ⊕ 1

p
log(w))(x) (4.5)

lim
p→−∞

PConv(f, w, p)(x) = inf
y∈W (x)

{f(y)− 1

p
log (w(x− y))} = (f 	 1

p
log(w))(x) (4.6)

As we can see in equations 4.5 and 4.6, we can recover erosion and dilation functions (Equa-
tions 2.4 and 2.5) from the definitions (demonstrated in Angulo (2010)). As depicted in their
paper, the integration of the PConv layer in a learning framework was a successful attempt,
especially for a denoising process. However, the PConv layer have some pitfalls:

• f(x) = 0 and p < 0⇒ fp(x) ≡ NaN

• f(x) < 0 and p ∈ R⇒ fp(x) ∈ C

• If w(x) = 0 or fp(x) = 0⇒ 1
(fp∗w)(x) ≡ NaN

To counter this downsides, a rescale of input images between [1, 2] before feeding them to any
PConv layer is required. Also, from the results of the layer (analyzed in the original paper), a
tendency to learn hollow structuring elements can be discerned.

4.2 Proposed Layers

As evoked in Chapter 1, this work is the sequel of Kirszenberg et al. paper, Going beyond p-
convolutions to learn grayscale morphological operators, published in 2021. In this paper, two
morphological layers are proposed, LMorph and SMorph.

4.2.1 LMorph

The LMorph layer is a simpler approach of the use of the Counter-harmonic mean: instead of
only having f(y), the pixel value, to the power p, the summation of the pixel value and the
structuring element’s corresponding value w(x− y) is raised to the power of p. This is easier to
define an equivalence with erosion and dilation in this way, as detailed in the paper.

LMorph(f, w, p)(x) =

∑
y∈W (x) (f(y) + w(x− y))p+1∑
y∈W (x) (f(y) + w(x− y))p (4.7)

lim
p→+∞

LMorph(f, w, p)(x) = sup
y∈W (x)

{f(y) + w(x− y)} = (f ⊕ w)(x) (4.8)
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lim
p→−∞

LMorph(f, w, p)(x) = inf
y∈W (x)

{f(y) + w(x− y)} = (f 	−w)(x) (4.9)

Using the same base formula of approximation, LMorph suffers from quite the same issues
as the PConv layer concerning domain definition, thus a rescale of input data is needed.

4.2.2 SMorph

This time following another approximation function, the α−softmax, the SMorph layer is pre-
sented as a more promising alternative as it does not suffer from any numerical issues, and
yields better results most of the time (see section 4.3).

The α−softmax function, taking back Y := y1, y2, . . . , yn defined in section 4.1 and α ∈ R is
defined as:

Sα(x) =
∑n
i=1 xie

αxi∑n
i=1 e

αxi
(4.10)

With the approximation properties, similarly characterized as:

lim
α→+∞

Sα(Y ) = max
i
yi (4.11)

lim
α→−∞

Sα(Y ) = min
i
yi (4.12)

The SMorph layer is accordingly defined as:

SMorph(f, w, α)(x) =

∑
y∈W (x)(f(y) + w(x− y))eα(f(y)+w(x−y))∑

y∈W (x) e
α(f(y)+w(x−y)) (4.13)

With the resulting properties derived as follow:

lim
α→+∞

SMorph(f, w, α)(x) = (f ⊕ w)(x) (4.14)

lim
α→−∞

SMorph(f, w, α)(x) = (f 	−w)(x) (4.15)

4.3 Results Analysis

The conducted experiments in this paper used the structuring elements of Figure 4.1 to create
target images; therefore, they are the expected structuring elements to be learned through the
experiences. Furthermore, convergence of parameters p (PConv and LMorph) and α (SMorph)
is also looked after, as they are expected to progress towards positive or negative infinity, for
dilation and erosion respectively. The training steps were performed on the MNIST database
LeCun et al. (1989) (composed of handwritten digits images).

From Kirszenberg et al.’s paper we can retrieve visual and quantitative results: Figure 4.2
shows that, for dilation and erosion, LMorph and SMorphwork pretty well at learning desired
structuring elements and transformations. Table 4.3 shows that the best results when looking
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cross3 cross7 disk2 disk3 diamond3 complex

Figure 4.1: 7×7 target grayscale structuring elements. All values range between 0 (deep blue)
and 1 (yellow).

at the Loss (output comparison) and the RMSE (learned structuring element compared to the
expected one) are split between LMorph and SMorph, both outperforming the PConv layer.

p = 20.2 p = 23.2 p = 8.3 p = 9.4 p = 9.4 p = 12.6

p =−20.9 p =−21.5 p =−10.5 p =−15.7 p =−13.2 p =−16.7

PConv

⊕

	

p = 94.8 p = 95.3 p = 93.5 p = 93.3 p = 94.4 p = 91.9

p =−77.2 p =−59.5 p =−60.8 p =−59.8 p =−66.1 p =−79.7

LMorph

⊕

	

α = 43.3 α = 53.3 α = 45.8 α = 56.1 α = 51.8 α = 45.6

α =−34.1 α =−28.5 α =−33.2 α =−28.1 α =−34.4 α =−23.8

⊕

	
SMorph

Figure 4.2: Learned structuring element (with corresponding p or α at convergence) for PConv,
LMorph and SMorph layers on dilation ⊕ and erosion 	 tasks.

Now looking at opening and closing results (Figure 4.4 and Table 4.3), we can see that there is
more trouble to reach desired convergence, especially for LMorph with the opening operation.
Eventually, LMorph and SMorph have globally better statistics than PConv, although some
experiences showed the layers difficulties to converge toward a great result, whether talking
about the parameters or structuring elements.

We will consider those convergence defaults as edge cases, as it is neither a normal nor an
expected behavior.
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Figure 4.3: MSE loss at convergence and RMSE between the learned structuring element dis-
played by Figure 4.2 and the target for PConv, LMorph and SMorph layers on dilation ⊕ and
erosion 	 tasks. Best (lowest) results are in bold.
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Figure 4.4: Learned structuring elements (with corresponding p or α value for each layer) for
PConv, LMorph and SMorph layers on closing • and opening ◦ tasks.
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Figure 4.5: MSE loss at convergence and RMSE between the learned structuring elements dis-
played by Figure 4.4 and the target for PConv, LMorph and SMorph layers on closing • and
opening ◦ tasks. Best (lowest) results are in bold.



Chapter 5

Work, Experiments and Results

One of the main purpose of my work this semester has been to investigate those edge cases,
trying to find why there were problems in the learning process and potentially find solutions to
remedy those complications. In this part I will detail my working process throughout this first
half of the year, going from the assimilation of the subject to experiments field extend, passing
by the investigation regarding those corner cases.

5.1 Prerequisites

First of all, this subject comes with two big imperatives, that are being aware of (grayscale)
mathematical morphology and supervised learning. I discovered mathematical morphology
through definitions, examples and experiences in Python, but also when searching for ref-
erences on the subject. For the supervised learning part, I already had the basics and only
re-documented myself to strengthen the theory.

With enough theory, documentation, knowledge and practice, I would now start looking at
different libraries such as scikit-learn, SciPy, PyTorch and CUDA which are essential for
the implementation leading the theory of the subject.

Also, the code used to produce the results of Kirszenberg et al.’s paper was given to me; I
had to fully understand it, which was a heavy task (but rather simple compared to re-coding
everything) as it is roughly about 1.3k lines of code in Python (use of PyTorch, SciPy, etc.),
and 650 lines of C++ (GPU programming with CUDA and a Python bridge part with PyTorch).
Still, the code was not working so I had to debug it to make it run.

5.2 Experiences Reproduction

What had not been done with the original experiments was to repeat the learning procedures
to have a more accurate vision on the actual results and more rigorous conclusions over the
proposed layers.

With the success of running the given code, I have been able to write scripts to automate runs
of learning to have a broader database and have realistic results. I firstly did ten runs with the
three different layers for the four operations and the six different structuring elements, which
translate to 10 ∗ 3 ∗ 4 ∗ 6 = 720 base runs. Considering the time of each run (it hugely depends
on the operation and the layer) being between twenty minutes and one hour, I considered it to
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be enough to make general statistics about the learning behaviors and processes.

In figures 5.1 and 5.2 we can see that the results I had for erosion and dilation through those
runs are sensibly similar to the ones exposed in the original paper, which is what I was expect-
ing, and very stable; those results were comforting in the idea of having a solid base for further
work.
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Figure 5.1: Learned filterw, corresponding parameter p/α, RMSE between the learned filter and
the target structuring element, MSE training loss at convergence and number of training epochs
for PConv, LMorph and SMorph layers on an erosion 	 task. Reported values correspond to
the average ± standard deviation over the 5 runs. Best (lowest) results are in bold.

Now focusing on opening and closing operations results which can be seen in figures 5.4 and
5.3, the output is also similar and even better than the one in the paper, which is very reassuring
especially for LMorph and the opening operation.

With those runs, I could not reproduce the errors for the LMorph layer and the opening
operation introduced in Kirszenberg et al. (2021). While I was investigating on edge cases (see
section 5.3), I found similarities between the aspects of the structuring elements half through the
learning process (see Figure 5.6) and the learning failures, which led me to the conclusion that
those edge cases were probably caused by a problem during the runs, such as a premature stop
of the learning process. As a consequence, I was able to concentrate my investigation process
on permanent edge cases, which still are a problem to solve.
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Figure 5.2: Learned filterw, corresponding parameter p/α, RMSE between the learned filter and
the target structuring element, MSE training loss at convergence and number of training epochs
for PConv, LMorph and SMorph layers on a dilation ⊕ task. Reported values correspond to
the average ± standard deviation over the 5 runs. Best (lowest) results are in bold.

5.3 Edge Cases Study

5.3.1 Structuring Elements Learning Troubles

To find the causes of learning failures, I had to better understand the learning process; along
these lines I started to look at the evolution of the learned structuring element during the runs.
It appeared (see Figure 5.6) that the structuring elements are learned from the outside toward
the inside. To be more specific, the convergence of the learned structuring elements seems to
start at the edges of the filter and then continues at the center. This observation leads to the
hypothesis of the structuring elements being harder to learn when they are not touching the
borders of the filter.

To test this assumption, I tried to add margins to structuring elements that touched the edges,
and remove them for those not touching. The result of these experiments can be seen in Figure
5.6.

The outcome of these experiments seems to show that adding margins to structuring elements
or removing them influences the learning process. The more there are margins, the harder it
seems for it to be learned. Although the opening with a cross 3 × 3 and LMorph, closing with
cross 3×3 and disk2 5×5 for SMorph are failures, the others show improvements in the learning
process, which shows that removing the borders helps the structuring elements to be learned.

Nevertheless, it would need more tests to have a more rigorous conclusion, such as testing
the learning process with larger touching structuring element, because enlarging the structuring
elements may cause troubles for the learning process as the input images are small (25 × 25
without padding), or testing with other smaller structuring elements, as smaller than the usual
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Figure 5.3: Learned filters wi, corresponding parameter pi/αi and RMSEi between the learned
filter and the target structuring element for both layers (i ∈ {1, 2}), MSE training loss at conver-
gence and number of training epochs for PConv, LMorph and SMorph layers on an opening ◦
task. Best (lowest) results are in bold. Abnormal results are in red.

7 × 7 could just be easier to learn. Also, a special structuring element composed of two disks,
one touching the edges and one inside the first touching neither the edges nor the first disk
could lead to interesting results.

5.3.2 Architecture Inherent Range Problem

One problem which does not clearly appear in previous shown results is the actual learned val-
ues of the structuring elements. The ones used (Figure 4.1) have values between 0 and 1, but
even if the visual aspect of the learned structuring elements (usually displayed with the color
gradient depending on the minimum and the maximum values of the structuring element) is
very closed to the expected one are very similar, the values are not between 0 and 1. This caused
the problem of not fully understanding how the networks could produce a correct output and
not knowing how to truly interpret the resulting structuring elements and compare them to the
ground truth.

The first thing to notice, taking back equations (4.9) and (4.15), is the minus sign in the formula
of the erosion (f 	 −w)(x), with w being the structuring element. Because of this condition,
when learning an erosion the network has to learn −w to compensate everything and have an
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Figure 5.4: Learned filters wi, corresponding parameter pi/αi and RMSEi between the learned
filter and the target structuring element for both layers (i ∈ {1, 2}), MSE training loss at conver-
gence and number of training epochs for PConv, LMorph and SMorph layers on a closing •
task. Best (lowest) results are in bold. Abnormal results are in red.

actual erosion by w:
(f 	−(−w))(x) = (f 	 w))(x)

Issuing from this, when talking about an erosion, the expected values of the structuring ele-
ment should be between −1 and 0. Still, this minus sign is not the solution at everything as
a range of values could be [−0.3; 2.7] (taken from experiments with the SMorph layer), which
even when taking the opposite is not even near [0; 1]; a thing I however noticed is that when
changing the structuring elements from their ranges to [0; 1], which can be resumed as applying
w̃ = ŵ−min(ŵ)

max(ŵ)−min(ŵ) , with ŵ the learned filter and w̃ the result of this manipulation, the RMSE
between w̃ and w was less than the one between ŵ and w.

The first approach I tried is to find a way to mathematically explain this disparity, trying to
prove that the formulas we used could produce same results for structuring elements in differ-
ent ranges, more precisely that there was a way for (f⊕w)(x) = (f⊕(αw+β))(x) to be possible,
with α, β ∈ R. Sadly, this led to nothing great besides the fact that I enjoyed toying with the
formulas, and that it could prove to be useful for further experiments.

The other idea to solve this problem has been to look at the network architecture more glob-
ally and find a culprit for the compensation that is clearly happening. Even if nothing is proven
or tested to the extend it should be to have a solid conclusion, some experiences I have done



23 Work, Experiments and Results

Init 1% 2% 3% 5% 7% 10% 20% 50% 100%

Layer 1
α1

Layer 2
α2

0 0.318 0.786 0.944 1.113 1.251 1.531 6.409 37.176 43.002

0 −1.910 −1.956 −1.724 −1.599 −1.674 −2.083 −8.904 −39.250 −42.870

Layer 1
α1

Layer 2
α2

0 0.433 0.723 0.895 1.184 1.365 1.823 5.384 31.120 42.454

0 −1.721 −1.608 −1.584 −1.531 −1.650 −2.448 −7.813 −35.646 −41.604

Layer 1
α1

Layer 2
α2

0 −0.185 −0.363 −0.306 −0.279 −0.272 −0.261 −0.256 −0.277 −0.282

0 −0.941 −1.392 −1.804 −2.221 −2.541 −3.015 −4.416 −6.500 −6.481

Figure 5.5: Convergence of two consecutive SMorph layers in a closing • scenario, with cor-
responding values of α1 and α2. Target structuring elements are diamond3 (top row), cross7
(middle row) and disk2 (bottom row). Layers are shown at initialization, 1%, 2%, 3%, 5%, 7%,
10%, 20%, 50% and 100% of total number of training epochs.

clearly go in the sense of the scale bias layer (1× 1× 1 convolution layer, which can be resumed
as a multiplication and an addition by/of learned parameters, see Figure 5.7) giving more flex-
ibility when learning the structuring elements. It is worth mentioning that without it, LMorph
and PConv cannot reach convergence for an erosion as they cannot learn negative weights, and
SMorph is a priori learning the filter in a more similar range as [0; 1] than with it. This layer is
thus necessary for CHM based layers (it also compensates for the rescale in range [1; 2] of the
input), but could be removed for runs with SMorph.

5.4 Robustness Evaluation

To go further in the experiments and test if the proposed layers have the potential of bringing
great results over more complicated but more realistic tasks, I led a bunch of new experiments
which are just the beginning of a long list.
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Figure 5.6: Learned filters for opening ◦ and closing • operations for LMorph and SMorph for
cross3 and disk2 in a 5 × 5 spatial support, as well as disk3 in 9 × 9, 11 × 11 and 13 × 13 spatial
supports.

5.4.1 Binary Morphology with SMorph

As described in section 2.2, there exists an equivalent to binary mathematical morphology with
grayscale formulas. To further test the capabilities of the proposed SMorph layer, experiments
were conducted with the objective of learning binary structuring elements (Figure 5.8). Those
studies could not be conducted on other layers as CHM based layers cannot by themselves
(without scale/bias layer) learn things such as −∞ (Equation 2.6).

The results of these experiments can bee seen in figures 5.9 and 5.10. What comes out of
it is a total success for binary erosion and binary dilation, and mitigated but still very correct
for opening and closing. Notice that, because the input image values are in practice bounded
(f(x) ∈ {0, 1} since the input images f are binary), the structuring function (2.6) is equivalent
to

b : x 7→
{

0 if x ∈ B
≤ −1 otherwise

. (5.1)

And, as SMorph(f, w, α < 0)(x) ≈ (f 	−w)(x) (from Equation 4.15), the expected filter to be
learned are of the form

w(x) =

{
= 0 if x ∈ B
≤ −1 otherwise

for a dilation (5.2)

w(x) =

{
= 0 if x ∈ B
≥ 1 otherwise

for an erosion (5.3)
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input

target

output

{ }⊕/	 { }

Layer 1

rescale[1,2]

PConv(·,w, p)

LMorph(·,w, p)

SMorph(·,w,α)

Conv 1×1×1

Figure 5.7: Network architecture used for the erosion/dilation scenarios. Blue blocks are train-
able units. A scenario is defined as the choice of ⊕ or 	 and one of the 6 target structuring
elements in the upper path, and the choice of one layer among PConv, LMorph and SMorph
in the lower path.

cross7 bsquare bdiamond bcomplex

Figure 5.8: 7×7 target binary structuring elements. Yellow (resp. blue) corresponds to boolean
TRUE (resp. FALSE).

In this sense, clipped versions of the results are calculated and displayed in the figures. They
are used to calculate the RMSE with the expected structuring element.

5.4.2 Denoising

As a second way of testing the layers and producing additional data, I tried the denoising
power of LMorph and SMorph. First, for a more realistic experience, I added the support of
the Fashion-MNIST database1: it is a clothing pictures database which has the same structure as
MNIST but acts as a bit more complex database. After assuring that classical operations as al-
ready evaluated with the MNIST database were also working on Fashion-MNIST, I implemented
the noising and denoising process. I have in this way tested on salt noise (random pixels value
turned to 1 as input pictures are ranging in [0; 1]) and salt and pepper noise (random pixel turned
to 0 or 1), with two and four morphological layers respectively — salt noise needs an opening to
be removed, so two operations (two layers) and salt and pepper needs an opening and a closing,
so four layers. To have a more realistic salt and pepper noise, with pepper pixels not absorbed

1https://github.com/zalandoresearch/fashion-mnist
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Figure 5.9: Learned filter w and its clipped version with associated colorbars, and quantitative
metrics for a SMorph layer for binary erosion 	 (first row) and binary dilation ⊕ (second row)
scenarios.

by the background, input images are a bit changed before being noised: if x is a standard in-
put image, the actual input image for salt and pepper noise is equal to 1

2 + x
2 , this results in the

background being equal to 0.5 which is different from the 0 value of pepper noise.
The tests were conducted for multiple percentages of noise (10, 15, 20, 30, 40 and 50%). The

salt-denoising power (Figures 5.11 and 5.11) of both layers is very impressive, especially for
40% and 50% corrupted pixels; Peak Signal-to-Noise Ratio (PSNR) still needs to be checked.
The networks used for this part are, as said before, constituted of two morphological layers
and we expect the network to learn an opening, which is an erosion followed by a dilation,
and that is exactly what is happening as we can see in the figures 5.11 and 5.11 with the α
and p parameters (for SMorph and LMorph respectively, shown above the learned structuring
elements pictures) which are negative for the first layer and positive for the second.

For the salt and paper denoising part, networks with four layers were used for the training,
and we expect the network to learn a combination of an opening and a closing operation. Re-
sults are a bit less satisfying with 30% noise (Figures 5.14 and 5.16), especially compared to the
PConv result (Figure 5.18). Nevertheless, for 10% salt and pepper noise (Figures 5.13, 5.15 and
5.17), the SMorph layer has a great visual result which still is promising for further tests on
other tasks and more complex architectures. Surprisingly, for the 10% noise, SMorph (Figure
5.15) is succeeding on the denoising part but do not learn a succession of opening and clos-
ing operations but rather a way to fill the holes from pepper noise before applying a closing
operation to remove the remaining salt noise.
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Figure 5.10: Learned filter wi∈{1,2} and its clipped version, and quantitative metrics for two
SMorph layers for binary opening ◦ (first row) and binary closing • (second row) scenarios.
Abnormal results are in red.
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Figure 5.11: Results of learning denoising processes for different percentage (10, 15 and 20%) of
salt noise

Figure 5.12: Results of learning denoising processes for different percentage (30, 40 and 50%) of
salt noise
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Figure 5.13: LMorph layer denoising learning for 10% salt and pepper noise

Figure 5.14: LMorph layer denoising learning for 30% salt and pepper noise

Figure 5.15: SMorph layer denoising learning for 10% salt and pepper noise
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Figure 5.16: SMorph layer denoising learning for 30% salt and pepper noise

Figure 5.17: PConv layer denoising learning for 10% salt and pepper noise

Figure 5.18: PConv layer denoising learning for 30% salt and pepper noise



Chapter 6

Conclusion

In conclusion, during this semester I discovered new exciting fields of study, and learned a
lot from my researches and experiments. I have taken back a subject which had already solid
foundations and worked to pursue the effort done on trying to find an elegant way of learning
structuring elements and morphological operators. I have started with a basic re-conduct of
experiments, then dug out on the edge cases to fully understand what was or was not work-
ing, to finish with new experiments and new results. In six months with the huge help of my
supervisors we have been able to submit a paper to the Journal of Mathematical Imaging and
Vision (JMIV), which hopefully will be accepted.

Future Work

The next semester I will be more focused on trying new things: new morphological operations
like the top-hat, modifying the formulas to see if I can counter a possible undesired side effect
of needing to learn −w for an erosion operation, adding layers to create a classifier and see if a
morphological neural network can perform as well or better than a classical CNN, and as a last
experiment, see if a morphological network can be of any help for hyper-intensities detection in
brain images.
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