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Introduction



Convolution

[Banharnsakun, 2019]

2



Convolution

[Ponti et al., 2017]
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Convolutional Neural Network (CNN)

Towards Data Science
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https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Pooling Layer

Reducing feature map resolution

• Helps at increasing distortions invariance
• Reduce computational complexity

5



Pooling Methods



Average Pooling [LeCun et al., 1989]

[Guissous, 2019]

• Takes every neighbor
values into account

• Areas of high activation
are down-weighted
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Max Pooling [Ranzato et al., 2007]

[Guissous, 2019]

• Idea: Areas of interest are
of high intensity

• Globally better than
average-pooling

• Does not take low
intensities into
consideration

• Worse at preserving
localization
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Stochastic Pooling [Zeiler and Fergus, 2013]

• Calculates probabilities by
normalizing the activations

within the region

• Multinomial distribution
selects an activation value

within the region

• Gives higher chances to
stronger activations

• Includes the non-maximal
activations

• Prohibits overfitting
because of the stochastic
component

• Performs better than max
pooling
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Mixed Pooling [Yu et al., 2014]

• λ ∈ {0, 1}, picked
randomly

• λ = 0, average pooling
• λ = 1, max pooling

• Stochastic procedure
• Prohibits overfitting
• Performs better than
average, max, stochastic
pooling
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Spectral Pooling [Rippel et al., 2015]

Pooling result by cropping image dimensionality
(max pooling) or frequency domain matrix (spectral

pooling)

• Faster convergence
• Pooling to any
desired output
dimensionality while
retaining
significantly more
information

• Incessant domain
switching
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Detail-Preserving Pooling (DPP) [Saeedan et al., 2018]

Computes a spatially weighted average of the input
nodes in a neighborhood, weights depending on pixel

values distances

• Aims to preserve small
details

• Performs at least as good
than standard pooling
layers

• Does not disrupt the flow
of gradients of the
backward pass

• Stochastic regularization
techniques can be
integrated

• The more detailed features
might be the less
discriminative ones 11



Local Importance-based Pooling (LIP) [Gao et al., 2019]

Computes weighted average over neighborhood

Where G is the one of the
following module with learnable

components:

• Automatically enhance
discriminative features
during the downsampling
procedure by learning
adaptive importance
weights based on inputs

• Yields notable gains with
different depths and
different architectures on
classification tasks
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Remark

There are many other existing method for pooling:

• Lp pooling, a biologically inspired pooling
[Hyvärinen and Köster, 2007]

• Spatial Pyramid Pooling (SPP) [He et al., 2015]
• Multi-scale Orderless Pooling (MOP) [Gong et al., 2014]
• Super-pixel Pooling [Ren and Malik, 2003]
• PCA Networks [Chan et al., 2015]
• Compact Bilinear Pooling [Lin et al., 2015]
• Edge-aware Pyramid Pooling [Xu et al., 2019]
• Lead Asymmetric Pooling (LAP) [Liu et al., 2018]
• ...
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Other Way for Image Analysis
Progress



Morphological Neural Networks

• Morphology neural networks: An introduction with
applications [Davidson and Hummer, 1993]

• A Learning Framework for Morphological Operators Using
Counter-Harmonic Mean [Masci et al., 2013]

• Deep morphological networks [Franchi et al., 2020]
• Going beyond p-convolutions to learn grayscale
morphological operators [Kirszenberg et al., 2021]
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Conclusion



Conclusion

The choice of the pooling layer depends on:

• The complexity and diversity of the data
• The available implementation and learning time
• The developer skills
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The End

Any Questions?
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Appendix

CIFAR-10 Classification performance for various pooling methods
compared to the state-of-the-art performance with and without

dropout [Zeiler and Fergus, 2013]



Appendix

Comparative classification performances with various pooling
methods on the CIFAR-10 dataset [Yu et al., 2014]



Appendix

Test errors on CIFAR-10/100 without data augmentation of the
optimal spectral pooling architecture [Rippel et al., 2015]



Appendix

The competition results of ILSVRC 2014 classification [He et al., 2015]



Appendix

Comparison of different architectures and pooling layers on the
CIFAR10 dataset [Saeedan et al., 2018]
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