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Abstract

When talking about object detection, image analysis, image classification and
essentially every algorithm that tries to apply the conveniences of deep learn-
ing and back-propagation in signal related fields, Convolutional Neural Net-
works (CNN) appear to be the best contenders. Throughout the years, many
variants were proposed with architectures and layer arrangements very pe-
culiar and different, but also diverse pooling/sub-sampling methods, which
CNNs heavily rely on to increase invariance to distortions and have a broader
feature detection. In this paper, we overview the structure of Neural Net-
works and Convolutional Neural Networks, review the existing approaches of
pooling layers and present possible future directions.

1 Introduction

CNNs started with the idea of mimicking the natural visual perception mechanism
of the living creatures (Fukushima & Miyake, 1982; Hubel & Wiesel, 1968), and
was first introduced in the way we know them today by LeCun et al. (1989), with
the LeNet network model. To be more specific, CNNs try to detect images’ distinct
features that are key-points to describe the picture and derive conclusions – i.e, in
recurring application, what is on it.

From this point and thanks to the ever growing datasets and improving comput-
ing capabilities, CNNs are now a big part in artificial intelligence, and researches
on the subject to improve the used methods, algorithms and architectures allow a
constant evolution of networks models; to cite a few major breakthroughs or refer-
ences, AlexNet (Russakovsky et al., 2015), VGGNet (Simonyan & Zisserman, 2015),
GoogLeNet (Szegedy et al., 2015), ZSFNet (Zeiler & Fergus, 2014) and ResNet (He,
Zhang, Ren, & Sun, 2016).

In this survey, we will cover the base structure of CNNs with greater focus on
pooling layers and their usefulness, with an overview of existing pooling methods,
finishing with the study of a potential CNN alternative.

2 Neural Networks: Underlying Secrets

The idea of a neural network is to evaluate an input and give an opinion on what
was given to it; of course, its answer depends drastically on what data it was given
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to train on and the output the developer expected for each entry. One could see
a neural network as a bunch of parameters which are just numbers called weights,
and each of them acts as a feature detector, i.e, when different entries are given,
the combination of the weights’ and entries’ values will give different results, thus
making it possible to make decisions.

For the network to learn and improve the value of those weights, it compares its
prediction to the expected output and changes the weights’ values according to the
error. In fact, this error is calculated with a function and the net’s goal is to find
the weights’ values that minimize the error, that is, finding the minimum of this
multidimensional function.

3 Less Weights, More Convolutions

Analyzing a signal like an image would require a crazy amount of weights with
a classic Neural Network as of the great number of pixels in a picture and the
complexity of the perception process, causing a difficult training. Fortunately, CNNs
are well suited for this task and overcome some of the problems one could face with
classic perceptrons.

CNNs have limitless architectures possibilities, but the core idea is to chain
convolution layers and pooling layers – with an activation function in between, and
ending in fully connected layers.

3.1 Convolution Layers

Firstly, the convolution layer. Its biggest asset is to introduce shared weights be-
tween every pixel of the image; indeed, a convolution layer is composed of multiple
kernels, small matrices, each one takes the role of a feature detector and its output
(feature map) serves for the decision making.

The convolution process to get the feature map is very straightforward, as it
only consists in sliding the kernel and centering it on each pixel, multiplying the
overlapped values together and summing the results to get the corresponding feature
map’s pixel value.

This structure of kernels shared by each pixel have the advantage of making it
easier to train and find a global solution by reducing the model complexity, but
also helps with spacial discrepancy. There exists multiple types and improvements
of convolutions such as tiled convolution (Le et al., 2010), transposed convolution
(Zeiler & Fergus, 2014), dilated convolution (F. Yu & Koltun, 2016), and other
improvements over the layer architecture, each one aiming at improving the spatial
invariance character of the layer and even more (Gu et al., 2018).

3.2 Pooling layers

“Reducing the precision is actually advantageous, since a slight distortion or transla-
tion of the input will have reduced effect on the representation” (LeCun et al., 1989),
that’s why pooling layers always go hand in hand with a convolution layer. The
final objective is always to reduce the feature map size and resolution to introduce a
certain level of invariance to distortions and translations, increase the receptive field
size, but different techniques exist to help carrying the more information possible
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to the depth of the network, thus making it possible to stack layers robustly.

Starting with the average pooling , introduced in LeCun et al. (1989), this layer
performs down sampling by dividing the input into rectangular pooling regions and
computing the average values of each region. This has the tendency of smoothing
the feature map.

Also widely use and with a similar process, there is the max pooling (Ranzato,
Boureau, & LeCun, 2007), which instead of taking the average of the region value,
takes the maximum.

Combining the too approaches, the mixed pooling (D. Yu, Wang, Chen, &
Wei, 2014) introduces a stochastic procedure by randomly using the conventional
max pooling and average pooling methods.

Lp pooling , a biologically inspired pooling (Hyvärinen & Köster, 2007), is a
pooling using a weighted average of the feature map’s regions. The parameter
p can be tuned for the layer to mimic max pooling or average pooling, but its
generalization ability is claimed to be better than max pooling (Bruna, Szlam, &
LeCun, 2014).

Instead of picking the maximum value within each pooling region as max pooling
does, stochastic pooling (Zeiler & Fergus, 2013) randomly picks the activations
according to a multinomial distribution, which ensures that the non-maximal acti-
vations of feature maps are also possible to be utilized. Compared with max pooling,
stochastic pooling can avoid over-fitting due to the stochastic component.

Spectral pooling (Rippel, Snoek, & Adams, 2015) performs dimensionality re-
duction by cropping the representation of input in frequency domain. Spectral
pooling first computes the discrete Fourier transform (DFT) of the input feature
map, then crops the frequency representation by maintaining only the central sub-
matrix of the frequencies, and finally uses inverse DFT to map the approximation
back into spatial domain. Compared with max pooling, the linear low-pass filtering
operation of spectral pooling can preserve more information for the same output
dimensionality.

Spatial Pyramid Pooling (He, Zhang, Ren, & Sun, 2015) (SPP) pools the
input’s feature map in local spatial bins with sizes proportional to the image size,
resulting in a fixed number of bins, thus the key advantage of SPP is that it can
generate a fixed-length representation regardless of the input sizes.

Multi-scale Orderless Pooling (MOP) (Gong, Wang, Guo, & Lazebnik,
2014) improves the invariance of CNNs without degrading their discriminative
power. It extracts deep activation features for both the whole image and local
patches of several scales.The activations of local patches are aggregated by VLAD
encoding (Jégou et al., 2012), which aims to capture more local, fine-grained details
of the image as well as enhancing invariance.

Detail-Preserving Pooling (DDP) (Saeedan, Weber, Goesele, & Roth, 2018)
appeared inspired by the human visual system, which focuses on local spatial
changes, to propose an adaptive pooling method that magnifies spatial changes
and preserves important structural detail.

Local Importance-based Pooling (LIP) (Gao, Wang, & Wu, 2019) is a layer
able to adaptively determine which features are more important to be kept through
downsampling. For instance, LIP enables the network to preserve features of tiny
targets while discarding false activations of the background clutter when recognizing
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or detecting small objects. Moreover, LIP is a more generic pooling method than
the existing methods, in sense that it is capable of mimicking the behavior of average
pooling, max pooling and detail-preserving pooling.

4 Area of Improvement: Morphological Neural Net-
works

Mathematical morphology operations are techniques part of computer vision and
image algebra (Ritter & Wilson, 1996). The combination of those operations and
neural networks arose theoretically with Davidson and Ritter (1990) and concretely
latter on with Davidson and Hummer (1993). Those premises of a promising field
of study do not fails to generate enthusiasm in the mathematical morphology com-
munity, and we start to see networks implementations with the concern of finding
the best way to mix those operations and deep learning (Masci, Angulo, & Schmid-
huber, 2013).

Studies start to arise comparing the efficiency of CNNs compared to that of
MNNs, (Franchi, Fehri, & Yao, 2020), and regarding the de-noising capability of
those latter, MNNs are better; we could see other applications as of image analysis
and object detection appear on further works, like the inspiring layers of Kirszen-
berg, Tochon, Puybareau, and Angulo (2021) which could in a short term be im-
proved or included, mixed with other networks and layers, to outperform today
standards.

5 Conclusion

We have seen in this survey the basics of Neural Networks and Convolutional Neural
Networks, focusing on the main existing pooling layers, and highlighting a promising
field of study that are Morphological Neural Networks. CNNs are still evolving
throughout the time and very quickly, researchers are perpetually trying to push
this technology further, and it already made a big breakthrough in image processing.
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