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Abstract

One-class anomaly detection aims to detect objects
that do not belong to a predefined normal class. In
practice, training data lack those anomalous samples;
hence, state-of-the-art methods are trained to discrimi-
nate between normal and synthetically-generated pseudo-
anomalous data. Most methods use data augmentation
techniques on normal images to simulate anomalies. How-
ever, the best-performing ones implicitly leverage a geomet-
ric bias present in the benchmarking datasets. This lim-
its their usability in more general conditions. Others are
relying on basic noising schemes that may be suboptimal
in capturing the underlying structure of normal data. In
addition, most still favour the image domain to generate
pseudo-anomalies, training models end-to-end from only
the normal class and overlooking richer representations of
the information. To overcome these limitations, we con-
sider frozen, yet rich feature spaces given by pretrained
models, and create pseudo-anomalous features with a novel
adaptive linear feature perturbation technique. It adapts
the noise distribution to each sample, applies decaying lin-
ear perturbations to feature vectors, and further guides the
classification process using a contrastive learning objec-
tive. Experimental evaluation conducted on both standard
and geometric bias-free datasets demonstrates the superi-
ority of our approach with respect to comparable baselines.
The codebase is accessible via our public repository.

1. Introduction
Anomaly detection (AD), also known as novelty or out-

of-distribution detection, is a widely investigated research
topic, with applications ranging from machine faults detec-
tion [31, 40], to malicious transactions in banking [6] and
hazardous environmental situations in autonomous driv-
ing [3]. In most cases, abnormal samples are too costly
to obtain, and only normal samples are available. This AD
problem is therefore unsupervised and is also referred to as

unlabelled one-class anomaly detection [45, 47], one-class
novelty detection [29], or semantic outlier detection [26]. In
this paper, we tackle the problem from an image-level per-
spective, i.e., given images from a single semantic class, be-
ing able to classify unseen images as belonging to that class
(normal samples) or not (anomalies). This differs concep-
tually from anomaly segmentation, addressed in fields such
as medical diagnosis [12] or industrial quality control [2]
and concerned with localisation of pixel-level abnormali-
ties within one semantic class, requiring dedicated heuris-
tics and generally heavier computations.

State-of-the-art (SotA) one-class anomaly detection
approaches can be classified into three main cate-
gories: reconstruction-based methods [8, 10, 34, 37, 48, 51],
embedding-based methods [16, 20, 35, 38, 46] and synthetic
anomaly-based methods [1, 7, 15, 18, 22, 39, 44, 45, 47].
Reconstruction-based methods consist of training a deep
neural network to reconstruct normal images and using the
reconstruction error as a metric to differentiate between nor-
mal and abnormal samples. However, such methods rely
on the assumption that the network can accurately recon-
struct training data but cannot generalise beyond it, which is
not necessarily true in practice. Embedding-based methods
aim to embed normal feature distribution into a compressed
space to facilitate the distinction with abnormal data. How-
ever, these methods are subject to feature collapse and re-
quire dedicated heuristics to prevent this from happening.

Synthetic anomaly-based methods consist mostly in gen-
erating artificial anomalies, i.e. pseudo-anomalies, from
normal data during training to learn discriminative fea-
tures able to separate normal and abnormal data. These
methods, whose development has been driven by the rise
of self-supervised image representation learning [9, 14],
have achieved among the highest performances on stan-
dard benchmarks such as CIFAR-10 [24]. In practice,
these methods generate pseudo-anomalous images using
data augmentation techniques, and results from the litera-
ture show that the most effective type of augmentation is
image rotation. This is to the extent that, to the best of our

https://github.com/rhermary/PLUME
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Figure 1. Illustration of the geometric bias. first row: original im-
ages sampled from 2 public datasets. left column: representative
of CIFAR-10 [24] classes, second row is a manually rotated ver-
sion of the top image and differs significantly from it. Rotated im-
ages can be treated as anomalies, since the original data is biased
towards specific orientations. right column: second row contains
another original image found in the dataset, which exhibits natural
rotations compared to the top image. In the absence of orientation
bias, rotations cannot be used to create pseudo-anomalies.

knowledge, all of the best-performing methods take advan-
tage of it [1, 15, 18, 22, 32, 39, 44, 45, 47]. However, we
believe that the effectiveness of such an image transform
comes from the fact that original images in standard bench-
marks are biased towards specific orientations (animals or
cars are rarely pictured upside down). This is supported
by Goyal et al. [16] who noticed that these types of meth-
ods are “heavily domain dependent”, and that even within
the same dataset the “suitability of a transformation varies
based on the structure of the typical points”, making some
transformations very powerful in some cases but ineffective
in others. In addition, Gidaris et al. [14] found that human-
captured image are subject to well-posedness: always be-
ing in the same orientation, making ”the rotation recogni-
tion task well defined”. To the misfortune of SotA meth-
ods, this geometric bias is not omnipresent and therefore
cannot be leveraged, for example, in the case of spacecraft
datasets [33]. This intuition is illustrated in Figure 1.

Instead of leveraging geometric bias in the images, Sim-
pleNet [29] creates pseudo-anomalies at the feature level;
we argue that such an approach mitigates the risk of not
being generalisable beyond standard anomaly detection
datasets. Nevertheless, this method is from the other branch
of AD, localisation, it depends on locally applied perturba-
tions that do not allow for relevant semantic anomalies to

be generated, and, especially, relies on fixed Gaussian noise
for every sample, which refrains from any adaptation to the
likely complex structure of the representation space. The
latter limitation was anticipated with the method PLAD [7].
It proposes to automatically adapt the noise distribution pa-
rameters to every sample using a Variational Auto-Encoder
(VAE) [23]. However, such a method applies multiplica-
tive and additive noise at the image level, and we argue that
(i) deep learning features obtained from pretrained models
represent a more optimal encoding of useful semantic infor-
mation in images, making it easier to bound normality while
also limiting the risks of overfitting to the normal class, and
that (ii) applying a linear noising process is better suited to
perturb feature vectors.

Therefore, we propose PLUME, Pertubation Learning
with Unified inforMation Embeddings, an unsupervised
anomaly detection method that generates adaptive pseudo-
anomalies within the feature space during training. This is
achieved by introducing a linear disturbance to the normal
representations, automatically modulating this disturbance
with an adaptive noise level. Then, a multilayer perceptron
is used to learn a decision boundary between normal and
pseudo-anomalous features. It is further guided by a
contrastive learning objective to aggregate normal features
in a more unified representation and repel abnormal ones.
In a nutshell, our contributions are three-fold:

• we propose to work in a frozen feature space and de-
velop an adaptive linear feature perturbation technique
to create pseudo-anomalies from normal samples
without exploiting any dataset-specific geometric bias,

• we propose PLUME, a model that integrates the
aforementioned feature perturbator to learn to detect
anomalies in an unsupervised manner with the help of
a contrastive learning objective,

• we provide an experimental validation that demon-
strates the superiority of our method with respect to
comparable baselines on both standard and geometric
bias-free datasets.

The rest of the paper is organised as follows. Related
work is discussed in Section 2, and our approach is de-
scribed in Section 3. Section 4 presents experimental val-
idation against state-of-the-art baselines, along with an ab-
lation study. Specific aspects of our method are further dis-
cussed in Section 5, and Section 6 concludes the paper.

2. Related Work
2.1. Reconstruction & Embedding-based Methods

Reconstruction-based methods [8, 10, 34, 37, 48, 51] ex-
ploit the notion that anomalous image regions deviate sig-
nificantly from the patterns observed in training data, mak-
ing their faithful reconstruction challenging. These methods
leverage generative models such as auto-encoders (AEs)
or generative-adversarial networks (GANs). They learn



a compressed representation and reconstruct normal data
from it. Deviations from this learnt representation are
flagged as anomalies. However, learning to generate the
entire normal data distribution from a finite training set can
be challenging and inaccurate in practice (see Table 1a).

Embedding-based methods for AD embed features ex-
tracted from normal data into a lower-dimensional space.
This compression allows for easier identification of anoma-
lies, which supposedly lie far away from the cluster formed
by normal features. Historically, OCSVM [38] uses ker-
nel SVM to separate the normal data from the origin, con-
sidering it as the only negative data point. Support Vec-
tor Data Description (SVDD) [46] also uses kernel SVM to
find an hypersphere that encloses the normal data. How-
ever, such shallow methods struggle on complex domains
like images, where feature-engineering is quite challeng-
ing. Deep-SVDD [35] is a deep learning-based version of
SVDD; it minimizes the volume of the hypersphere that en-
closes the normal features. However, it may suffer from rep-
resentation collapse. HRN [20] tackles this issue by a holis-
tic regularization method. It constrains the model training
to consider the normal features holistically. Such a heuristic
is, however, insufficient in practice (Table 1a).

2.2. Synthetic Anomaly-based Methods
Synthesising-based methods adopt a different approach,

with the aim of learning how to differentiate normal data
from synthesised anomalies.

Several works [1, 15, 18] aim to learn the observed ge-
ometric characteristic of the normal data (e.g., orientation
of the object) by applying specific transformations (e.g., ro-
tations) to the input image and learning to predict the pa-
rameters of the applied transformation. The intuition is
that, at test time, a failure to accurately predict the trans-
form likely comes from geometric image properties that are
different from those of normal data, i.e. are from anoma-
lies. DROC [44] and CSI [45] leverage distributional aug-
mentation (e.g., rotation) to simulate real-world outliers and
model the inlier distribution by contrasting original sam-
ples with these simulated outliers. SSD [39] also leverages
contrastive learning. However, the learnt representation is
uniformly distributed on the hypersphere, contradicting the
core principle of AD, which suggests that the inlier distribu-
tion should remain compact against outliers. To avoid this,
UniConHA [47] proposes a dedicated “unilaterally aggre-
gated” contrastive learning objective.

Nevertheless, to be successful all these previous works
critically rely on side-information in the form of appropriate
transformations to generate pseudo-anomalies, which are
dataset-dependent. As the major SotA methods in one-class
AD suggest, rotation transformations are relevant to create
pseudo-anomalies on the standard benchmark.

In PLAD [7], pseudo-anomalies are generated by apply-
ing perturbations on the normal images, using multiplica-

tive and additive noise whose parameters are learnt to be
sample-specific. A discriminator made of fully convolu-
tional layers is then simultaneously trained to learn a tight
boundary around normal data. This generic method is there-
fore applicable to any dataset, since it does not rely on any
specific bias such as uniform object orientation repeated
across normal images.

However, in the era of foundation models [4, 21, 36],
where machines can perceive and understand the visual
world with unprecedented accuracy, we argue that pre-
trained features are more compact and structured represen-
tations of image content than raw pixel information and
are therefore more suitable supports for perturbation-based
anomaly synthesis. Nevertheless, we demonstrate in what
follows that additive and multiplicative noise, even adap-
tive, is not effective on deep features (Section 4.5); there-
fore, we introduce with PLUME a new adaptive linear per-
turabtion methodology that makes better use of this vec-
tor space, achieving new SotA results. In addition, our
method enables the reduction of the trained discriminator
to a small multilayer perceptron, which can be seamlessly
integrated into pre-existing architectures –sharing the fea-
ture extraction costs–, while maintaining strong AD perfor-
mance through the use of a contrastive learning objective.

3. Methodology
In this section, we detail our approach towards unsu-

pervised semantic anomaly detection. We consider a gen-
eral data space X ⊂ RD, where D is any dimension, in
which data points can either follow or defy an agreed nor-
mality. We denote by X+ the subspace of normality and by
X− = X \ X+ the subspace of anomalies. The training set
X ⊂ X is partitioned into X+ ⊂ X+ (normal samples) and
X− ⊂ X− (anomalies). In this paper, we place ourselves in
the extreme case where no anomalous sample is available
during training, meaning our solution is designed for appli-
cations where X− = ∅ (unsupervised anomaly detection).

3.1. Overview
To detect divergent samples, we train a classifier to pre-

dict whether the sample comes from X+ or X−. We fo-
cus on overcoming the lack of negative samples during the
classifier training and improving existing fitting techniques.
More precisely, we leverage the use of a pre-trained feature
extractor to work on an improved vectorised representation
of the data, i.e. features, and adapt our method to be effec-
tive within the considered vector space. In this work, we
are therefore considering a model h : RJ×H×W → X to go
from the image space RJ×H×W (with J , H , W the num-
ber of channels, height and width of the images) to a feature
space considered as our data space X.

The role of the classifier is to derive the complex deci-
sion boundary to establish the origin of the samples. With
only the positive class available during training, it would be



unnecessary for the network to find a well-fitting boundary
around X+ to satisfy the classification objective; instead,
the modelled solution would ignore the data information,
converging towards an infinitely large boundary radius and
100% false negatives when encountering anomalies.

To avoid this degenerate behaviour, we base our method
on the union of X+ with generated negative samples. To
cope with the lack of anomalous samples in the training
set X+, we follow the standard paradigm that consists
in applying a set of transformations T on elements of
X+ to simulate anomalies. The difficulty lies in deter-
mining what would be a valid T for any type of data.
Indeed, we have no guarantee that a transformation applied
to a normal sample gives a legitimate anomaly, except if
we have prior knowledge of both normal and abnormal data.

Following Cai and Fan [7] (PLAD), we propose to
adaptively noise the normal data, with the rationale that
there is a need for the noise to be adapted to each sample,
since they all lie in a different positions in the data space,
and that the noise level needs to be small for the perturbed
samples to be valid and allow sane convergence. Aiming
for an effective generation process, we adopt their adver-
sarial strategy with two models trained jointly.

Figure 2 depicts an overview of our architecture. A
first model, called the perturbator (purple), generates the
parameters for the transformations applied to the normal
samples. Eventually, its objective is to model the parameter
distribution which will allow correct transformations to
be applied. In PLUME, we design T to be effective in a
feature space.

The second model is the classifier (green), for which the
training objective is to distinguish between normal samples
and pseudo-anomalies. Inspired by contrastive learning
strategies, we make the model more efficient in separating
samples from different sources. By forcing the classifier to
project normal data into a unified representation, we aim at
easing the task of deriving the decision boundary.

Section 3.2 further describes the perturbator module and
Section 3.3 the optimisations in place for the classifier.

3.2. Feature Perturbator

Inspired by PLAD, a set of pseudo-anomalies X̃ is dy-
namically generated from X+ using a trainable neural net-
work g : RD → RD × RD, the perturbator. In PLAD, the
perturbator generates a couple of vectors (αi,βi) = g(xi)
specific to each normal sample xi ∈ X+ (vectorised image)
and interpreted as element-wise multiplicative and additive
noise maps (αi ⊙ xi + βi). These elements are restrained
not to produce pseudo-anomalies lying far away from nor-
mal samples –implied by the adversarial objective of the
classifier–, by a simple yet effective constraint L(i)

n , defined
for the ith sample in the current batch B+ as:

L(i)
n = ∥αi − 1∥2 + ∥βi − 0∥2, (1)

where 1 = [1, 1, . . . , 1]⊤ and 0 = [0, 0, . . . , 0]⊤ are vectors
of dimension D, same as xi, αi and βi. ∥·∥ is the ℓ2 norm.

Although shown to perform properly on images, addi-
tive and multiplicative noises are mostly used on raw signal
data and we argue that such transformations are not opti-
mal in a feature vector space. To make a more sensible use
of the features produced by h, better preserve the geometry,
structure and integrity of the data space while enabling more
complex transformations, we propose to redefine the pertur-
bation as a linear map Ai ∈ RD×D. For the perturbation to
produce cohesive and non aberrant data, we want this map
to represent a small perturbation, hence be close to the iden-
tity map. Instead of modifying the perturbator g to generate
directly a matrix in RD×D, which would heavily impact its
number of parameters and disturb its convergence, we pro-
pose to keep αi, βi (and their constraint L(i)

n ), using them
ingenuously to instead noise an identity matrix I ∈ RD×D:

Ai = I+αiβ
⊤
i . (2)

During the training, the perturbation Ai then converges to-
wards the desired identity map I, and pseudo-anomalies can
be generated by applying linear perturbations:

x̃i = Aixi. (3)
The batch B given to the classifier in any training step is

therefore the union of a subset B+ = {xi}Ni=1 ⊂ X+ of N
normal samples and the generated set of pseudo-anomalies
B̃− = {x̃i}Ni=1.

To generate αi and βi, we use a Variational Auto-
Encoder (VAE) [23] since shown to perform well as the gen-
erator g [7]. It is decomposed into two parts: an encoder and
a decoder. The first aims to fit a noise distribution, generat-
ing the set of intermediary parameters P = {(µi,σi)}Ni=1,
with µi and σi ∈ RD the encoded mean and variance
for the ith sample. The second generates the set of trans-
formation parameters G = {(αi,βi)}Ni=1, also respective
to each sample. As in the original work of Kingma and
Welling [23], the encoder is primarly optimised with a
Kullback-Leibler divergence D

(i)
KL:

D
(i)
KL =

1

2

D∑
d=1

[
σ2
i + µ2

i − 1− log(σ2
i )
]
d
, (4)

where [·]d denotes the value at the dth element of the vector.
The objective of the decoder parameters is modified and the
latter are optimised owing to L

(i)
n (Eq. 1).

3.3. Classifier

We use a neural network f : RD → R to distinguish
between normal data and anomalies. As a training objec-
tive, we define a target value y ∈ {0, 1} equal to 1 for all
x ∈ X+ and 0 for all generated x̃ passed to f. Subject to a
logistic activation function, any prediction ŷ of the classifier
lies in the range [0, 1] and a binary cross-entropy loss L(i)

CE

is used as a training objective. It is defined as:
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Figure 2. Diagram of our architecture, with the links between the different parts for a batch B+ of N vectors of dimension D (features
extracted with the backbone h). In purple, the perturbator g generating (αi, βi) couples for each sample. In red, the application of linear
perturbation to generate B̃ and construction of B. In green, the classifier f separated in two parts to access the classifier embeddings, in E.

L
(i)
CE = − [yilog(ŷi) + (1− yi)log(1− ŷi)] , (5)

for the ith sample in the current batch B, and with ŷi and yi
the predicted and groundtruth sample values, respectively.
To facilitate the derivation of the decision boundary, our in-
tuition is that the classifier f should map the normal data
to a very dense space, far from where anomalies would be
projected.

To develop the idea, let us decompose f into f1 and f2 so
that f = f2 ◦ f1. In our neural network setup, f1 : RD → E
represents the first layers of the network that condense the
information from the input into an embedding vector z ∈
E. Ideally, all vectors from the classifier embedding space
E should be very informative about the origin of the data.
On the other hand, we have f2 : E → R representing the
last layer that combines all the information extracted into
the final decision and is thus the boundary estimator. The
more f1 is discriminative, the easier it is for f2 to model the
decision boundary.

In order to increase the separability of the embeddings
in E, depending on their origin, we propose to maximise
the similarity of every z extracted from a normal sample
while, at the same time, maximise their dissimilarity with
the other embeddings extracted from anomalous samples.
As a measure of similarity between the vectors, we follow
the literature [9, 19] and leverage the use of temperature-
scaled cosine similarity s : E× E → [− 1

τ ,
1
τ ]:

s(v1,v2) =
1

τ

v1 · v2

∥v1∥∥v2∥
, (6)

where τ ∈ R helps controlling the concentration level of
the similarities distribution [49]. To simultaneously opti-
mise both objectives, we make use of the contrastive loss

defined in Equation (7), where zi denotes the embedding
vectors derived from normal samples, z̃i the ones from the
generated pseudo-anomalies, and 1a̸=b is an indicator func-
tion evaluating to 1 if a ̸= b, 0 otherwise:

L(i)
c =

1

N − 1

N∑
j=1

−1j ̸=ilog

[
exp(s(zi, zj))∑N

l=1 [exp(s(zi, z̃l)) + 1l ̸=iexp(s(zi, zl))]

]
. (7)

Finally, our loss L, defined in Equation (8), is an average
over the batch of the summed sub-losses. λ, ν and γ ∈ R
are tunable hyperparameters used to balance the different
losses with respect to LCE :

L =
1

N

N∑
i=1

(
L
(i)
CE + λL(i)

n + νD
(i)
KL + γL(i)

c

)
. (8)

4. Experimental Evaluation
In this section, we delve into the evaluation protocol used

and present the results obtained from our experiments. We
compare our approach with SotA methods and provide ad-
ditional experiments to highlight its added value.

4.1. Datasets and Evaluation

Following the main benchmark in unsupervised one-
class AD [7, 20, 35], we evaluate our method on CIFAR-
10 [24] and report the best AUCs. We produce and give
additional results on CIFAR-100 [24] and SPARK [33],
the latter being used as a non-geometrically-biased and
application-oriented dataset. To the best of our knowledge,
our work is the first to exploit SPARK in the context of AD.
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Figure 3. SPARK dataset [33] samples: satellite (left) and debris
(right); original (top) and cropped images (bottom).

CIFAR-10 & CIFAR-100 [24]. CIFAR-10 dataset is
composed of 10 object classes. For each of them, there are
5, 000 training samples. The validation set is composed
of 10, 000 samples balanced between all classes. Size
of images is 32×32. We evaluate our method following
the one-class classification paradigm, i.e. each class is
alternately considered as the normal class, while the 9
remaining classes form the set of anomalies. CIFAR-100,
on the other hand, has 100 object classes grouped into
20 meta-classes. Each meta-class has 2500 samples
of 5 different objects. The test set is also made up of
10000 images, and we alternatively consider each meta-
class as a normal class and the remaining ones as anomalies.

SPARK [33]. SPARK is a synthetic dataset composed of
images of satellites and debris orbiting the Earth. The 10
satellite classes (75, 000 training images) are combined as
one normal class, while the debris class (5 different debris
models) is used during validation as anomaly class. The
validation dataset is then composed of 5, 000 debris images
and 25, 000 satellite images. We only use the RGB images
and discard depth maps. As we focus on the semantics of
the objects, we also crop the images to the ground-truth
bounding boxes and reshape the resulting images into a
square format (512 × 512) using bilinear interpolation.
Sample images are provided in Figure 3.

Metrics. To avoid relying on a specific threshold, the stan-
dard evaluation procedure consists in reporting the best
Area Under ROC-Curve (AUC) [5] during the validation
stage. We thus use this metric in our experiments.

4.2. Baselines
We compare PLUME on CIFAR-10 with 9 baseline

methods. To the best of our knowledge, this selection covers
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Figure 4. Performance of SotA methods on CIFAR-10 dataset.
Methods on the left (blue background) achieve among the best
results by exploiting a geometric bias in the dataset, i.e. typical
object orientations. On the contrary, methods on the right (grey
background - green dots) are less dataset-specific and are there-
fore considered as our baselines. Detailed results of all methods
can be found in the supplementary.

most SotA approaches and contains the most accurate ones.
We do not consider rotation-based methods, that exploit a
bias present in the dataset but not necessarily in real-life
scenarios. However, for the sake of transparency and com-
pleteness, we have depicted all the results in Figure 4, also
including older well-known methods. We also ran PLUME
and our principal baseline PLAD [7] on CIFAR-100 and
SPARK, and reported the results in Table 1b.

4.3. Implementation Details
We use the Cyclical Learning Rate (CLR) [42, 43] for

optimal training phases and setting initial learning rate, in
combination with the AdamW [30] optimiser.

As our feature extractor h and unless otherwise specified,
we use the widely adopted ResNet50 [17] model pre-trained
on ImageNet [11]. This backbone is used as reference, but
can be replaced by any other state-of-the-art model. We
emphasise the fact that we do not retrain h for any of the
experiments. The other elements are trained from scratch.
An adaptive pooling layer is then used to bring every feature
vector to a size of D = 3072, corresponding to the input
size of the perturbator. Subsequently, a batch normalisation
layer is used to regularise the input space. The batch size
is set to N = 32. For the classifier, we use a simple multi-
layer perceptron of 3 layers. It is important noting that the
perturbator is only used during training, and discarded when
evaluating the model. More details on the implementation
can be found in the supplementary material.

We run each experiment 5 times for 100 epochs and, fol-
lowing the standard protocol in one-class AD [7, 16, 20, 29]
which avoids epoch fine-tuning alongside benchmarking,
save the best-performing model throughout the training.
Following PLAD, we set ν = 1 and tested different val-
ues for λ (5, 10 and 20 in our experiments), and found that
PLUME is very stable and achieves SotA results whatever



Method Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

ADGAN [10] 63.2 52.9 58.0 60.6 60.7 65.9 61.1 63.0 74.4 64.2 62.4
OCGAN [34] 75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 55.4 65.6
TQM [48] 40.7 53.1 41.7 58.2 39.2 62.6 55.1 63.1 48.6 58.7 52.1
DROCC [16] 79.2 74.9 68.3 62.3 70.3 66.1 68.1 71.3 62.3 76.6 69.9
HRN-L2 [20] 80.6 48.2 64.9 57.4 73.3 61.0 74.1 55.5 79.9 71.6 66.7
HRN [20] 77.3 69.9 60.6 64.4 71.5 67.4 77.4 64.9 82.5 77.3 71.3
DPAD [13] 78.0±0.3 75.0±0.2 68.1±0.5 66.7±0.4 77.9±0.8 68.6±0.3 81.2±0.4 74.8±0.2 79.1±1.0 76.1±0.2 74.6
DO2HSC [50] 81.3±0.2 82.7±0.3 71.3±0.4 71.2±1.3 72.9±2.1 72.8±0.2 83.0±0.6 75.5±0.4 84.4±0.5 82.0±0.9 77.7
PLAD [7] 82.5±0.4 80.8±0.9 68.8±1.2 65.2±1.2 71.6±1.1 71.2±1.6 76.4±1.9 73.5±1.0 80.6±1.8 80.5±0.3 75.1

PLUME 89.5±1.0 85.7±1.7 74.5±2.3 78.3±3.6 87.7±1.3 79.5±3.7 87.5±0.9 84.6±3.7 87.8±3.1 90.0±2.7 84.5
PLUME (Max.) 91.0 90.1 80.2 80.8 90.6 83.7 88.4 89.5 92.6 94.0 88.1

(a) Anomaly detection results on CIFAR-10. We report average results over 5 runs for each class, with the best results per class in bold. Maximum AUC
values for each class are reported in the last row (not considered in the comparison). The best performing value of λ was selected for each class.

Method Average AUC
PLAD† 63.8

PLUME 80.3
(b) Average AD score on
CIFAR-100. We report aver-
age results over the 20 meta-
classes and 5 runs (λ = 5).
We report our results (†) with
the available implementation
of PLAD [7].

Perturbation Guidance Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

Gaussian - 83.3±2.6 75.7±10.0 69.8±3.2 72.8±9.1 80.6±3.4 72.0±3.3 84.5±1.7 79.6±5.7 79.9±3.6 76.9±9.3 77.5
Gaussian ✓ 75.1±3.2 79.6±3.4 68.4±1.3 70.4±1.6 74.5±3.7 69.1±2.6 78.5±2.1 69.1±3.2 75.2±5.0 77.6±5.3 73.7
AddMult - 66.8±3.5 70.5±9.5 67.4±1.5 64.9±3.6 67.5±5.4 67.0±3.5 70.6±7.8 68.1±7.7 72.5±4.6 68.7±5.2 68.4
AddMult ✓ 59.2±2.6 62.6±2.6 61.2±1.5 58.7±2.0 63.0±1.9 62.6±1.0 68.6±3.0 59.5±4.9 61.1±1.2 57.5±4.6 61.4

LinearMap - 69.5±9.6 75.7±10.1 76.2±1.9 58.8±8.7 74.5±6.7 78.4±2.0 85.1±1.0 78.0±5.4 85.6±3.4 86.5±2.5 76.8
LinearMap ✓ (Mean) 81.4±6.0 72.4±7.2 74.8±3.5 60.3±7.9 74.5±5.5 77.9±1.8 86.4±1.8 82.6±2.7 84.0±3.1 74.3±11.9 76.9
LinearMap ✓ 86.8±1.3 85.7±1.7 74.5±2.3 75.0±6.8 87.4±1.7 77.0±2.7 86.1±1.7 84.0±2.6 87.8±3.1 89.6±3.2 83.4

(c) Ablation study over the perturbation method and the contrastive guidance. Experiments on CIFAR-10 (h: ResNet50,
λ = 5, 5 runs). We report results with adaptive additive and multiplicative noise (AddMult), adaptive linear mapping
(LinearMap) and random Gaussian noise (Gaussian); with (✓) and without (-) the contrastive loss, and results with the
contrastive loss with respect to the mean embedding vectors of normal and pseudo-anomalous data (Mean).

Table 1. Results on (CIFAR-10 Table 1a), CIFAR-100 (Table 1b) and ablation study (Table 1c).

the value. Detailed performance for each λ can be found in
the supplementary. We experimentally found τ = 0.5 and
γ = 1 providing sufficient performance.

4.4. Anomaly Detection on CIFAR-10 & 100

Table 1a presents a comprehensive evaluation of our pro-
posed AD method PLUME, along with comparable exist-
ing approaches on the CIFAR-10 dataset. We first no-
tice that PLUME consistently outperforms all methods in
terms of mean AUC, showcasing its superior AD capabil-
ities. For example, while OCGAN achieves a mean AUC
of 65.6%, DROCC 69.9%, DO2HSC 77.7% and PLAD
75.1%, PLUME significantly surpasses them with a mean
AUC of 84.5%. Furthermore, our method also demonstrates
consistent superiority in individual categories, achieving
highest AUC on each class. Additionally, the results on
CIFAR-100 (Table 1b) expose the higher scalability of
PLUME to more heterogeneous normal classes and fewer
training samples, without modification or additional train-
ing cost, compared to PLAD. The detailed results can be
found in the supplementary material. These results under-
score the substantial advancement in AD performance of-
fered by PLUME.

4.5. Ablation Study

We report the impact of PLUME components in Ta-
ble 1c. ResNet50 features were used and hyperparame-
ters are the same for the entire study (λ = 5). We first
replaced the linear mapping of PLUME by random Gaus-

sian noise (Gaussian). Without contrastive loss, the model
achieves an average AUC comparable to the current best
unbiased baseline, DO2HSC [50]. These results emphasise
on the importance of better representations, here given by a
ResNet50 trained on ImageNet. However, the decrease in
performance with the addition of contrastive guidance (al-
most 4pp of average AUC) reinforces the idea of unfitting
pseudo-anomaly generation, apparently conflicting with the
structure of the vector space. Although the use of perturba-
tions in the feature space seems very efficient, the simplicity
and randomness do not allow to create sensible anomalous
vectors that can be efficiently contrasted with respect to nor-
mal vectors.

Adaptive perturbations would allow to create meaningful
pseudo-anomalous vectors, which in turn would profit the
classifier and derive a better understanding of the normal
data, and a better decision boundary. However, basic ad-
ditive and multiplicative noise (AddMult) performs poorly
on vector representations of the data and only achieves
68.4% average AUC. In addition, it also shows a decrease in
performance with the contrastive guidance: AddMult also
seems not enough efficient at preserving strcuture coher-
ence in the vector space and rather confuses the guided net-
work. Finally, our proposed linear mapping (LinearMap)
is used and also achieves a performance comparable to
PLAD [7] and DO2HSC [50]. The major difference from
the other tested perturbation methods is that, thanks to its
greater expressiveness and richer transformation set, adding
contrastive guidance in this case is highly beneficial, offer-



PLAD† PLUME
Classifier LeNet5 [25] 3 Fully-Connected Layers

Input Data Raw Images Features
ResNet50 [17] VGG16 [41] ConvNeXt [28]

AUC 0.69 0.77 0.74 0.76

Table 2. Anomaly detection results on SPARK. We report the best
AUC reached by PLAD, which we ran (†), and PLUME with dif-
ferent frozen backbone architectures. We set λ = 5. ResNet50,
VGG16 and ConvNeXt networks were pretrained on ImageNet.

ing an increase of 6.6pp of average AUC and reaching SotA
results even without tuning λ. While using a simpler ver-
sion of the contrastive loss (Mean), i.e. contrasting with re-
spect to the mean embedding vectors of normal and pseudo-
anomalous data, could be more computationally efficient
(equation provided in the supplementary), it does not bring
enough additional knowledge and guidance to the classifier.
A completely contrastive guidance (Eq. 7) is necessary.

Overall, the ablation study indicates that (i) the Add-
Mult perturbation performs worse than simply adding non-
adaptive Gaussian noise in a frozen feature space and is in-
ferior to the LinearMap; (ii) the latter greatly profits from
the contrastive guidance and both combined allow PLUME
to be successful in deriving a more precise boundary in
the feature space, achieving SotA performance; (iii) us-
ing better representations, PLUME determines this decision
boundary by only training a 3-layers MLP. These results
underscore the effectiveness of the proposed methodology.
Further qualitative analysis on this structural difference can
be found in the supplementary.

4.6. Space Debris Detection on SPARK
SPARK’s complexity is significantly higher compared to

CIFAR-10, due to the similarities between normal and ab-
normal samples (space debris are often parts of spacecrafts)
and to the common background information shared by all
classes. Moreoever, it is important noting that 10 different
spacecraft classes are combined in the normal class, adding
an additional layer of intricacy to the data. This makes the
unsupervised AD task particularly challenging.

The results in Table 2 illustrate that, despite this com-
plexity, our method demonstrates a notable level of accu-
racy. This is particularly impressive given that our classi-
fier head is relatively simple and can easily fail to derive
a proper decision boundary. Moreover, none of the back-
bones was fine-tuned on datasets similar to SPARK (only
pretrained on ImageNet). Therefore, their ability to extract
optimal information from SPARK images is not guaranteed.

We trained PLAD, the main baseline, and obtained an
AUC of 69%. Comparatively, PLUME performs consis-
tently better with the different feature extractors, reach-
ing a maximum AUC of 77% with ResNet50. The accu-
racy achieved by PLUME underlines the robustness of our
method in dealing with complex datasets and the potential
it holds for practical applications.

5. Discussion & Future Work
PLUME has shown versatility and robustness, perform-

ing well with standard pre-trained backbones and complex
data. The ability to select different backbone architec-
tures enables customisation for specific applications, while
its universal design supports its scalability across differ-
ent domains. The key strengths of our method are its ef-
ficiency, seamlessly integrating with existing backbones al-
ready used for other tasks like pose or trajectory estima-
tion, and its independence w.r.t. data modality or special
attributes. This is especially valuable in resource-limited
environments, since adding a small classifier for AD signif-
icantly optimises resource usage.

While the introduction of linear mapping increases mem-
ory costs during training, this is mitigated when pre-
extracting features, as PLUME operates on a frozen feature
space, also inferring a reduced processing time. The com-
putational overhead at test time is also minimal, since the
AD network is a small MLP. However, pre-trained back-
bones on specialised datasets may be needed for optimal
performance in specific cases.

Future improvements could focus on refining our loss
function, as the current noise constraint was adapted from
previous work and not tailored to our perturbation method.
Maximising pairwise similarity between normal and gen-
erated samples, instead of constraining noise, could boost
performance. Additionally, reducing the current four learn-
ing objectives may improve network stability. Investigating
extensions to time-series, facing time dependencies, offers
another promising direction for future research.

6. Conclusion
We have presented PLUME, a novel approach for one-

class anomaly detection. It focuses on generating pseudo-
anomalies within the feature space, leveraging a novel adap-
tive linear feature perturbation technique, without taking
advantage of the geometric biases present in some datasets.
To guide the classification process, we introduced a con-
trastive learning objective that enhances the aggregation
of normal features and repels abnormal ones. This com-
bination of adaptive feature perturbation and contrastive
learning objective contributes to the effectiveness of our
approach in distinguishing between normal and abnormal
samples. Our extensive experimental evaluation demon-
strates the superiority of PLUME over comparable base-
lines on both standard and geometric bias-free datasets.
By outperforming existing methods on both, our approach
showcases its potential for real-world applications. We be-
lieve it has the potential to contribute significantly to various
domains, providing valuable insights and practical solutions
for AD challenges.
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